inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ying-Hua Zhao, Xue-An Chen,* Xin-An Chang, Jian-Long Zuo and Ming Li

College of Materials Science and Engineering, Beijing University of Technology, Ping Le Yuan 100, Beijing 100022, People's Republic of China

Correspondence e-mail: xueanchen@bjut.edu.cn

Key indicators

Single-crystal X-ray study T = 290 KMean σ (O–B) = 0.005 Å R factor = 0.034 wR factor = 0.123 Data-to-parameter ratio = 18.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

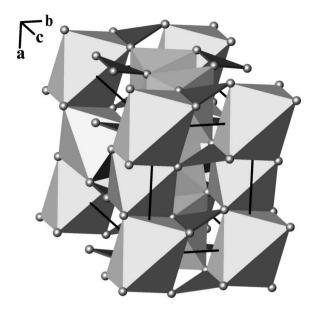
Tricadmium bis(borate), Cd₃(BO₃)₂

The crystal structure of cadmium orthoborate, $Cd_3(BO_3)_2$, contains two crystallographically distinct Cd atoms in octahedral coordination with site symmetries 2/m and 2, and one unique B atom in triangular coordination with site symmetry *m*. The CdO₆ octahedra and BO₃ triangles share corners and edges to form a three-dimensional framework.

Comment

Cadmium borates are of considerable interest because Cd₂B₂O₅ is an interesting host material for luminescent applications when doped with transition metal or rare earth ions. In the CdO- B_2O_3 system, at least three compounds have been proposed, including Cd₃B₂O₆ (Laureiro et al., 1991), Cd₂B₂O₅ (Weil, 2003) and CdB₄O₇ (Ihara & Krogh-Moe, 1966), of which the latter two phases have been structurally well characterized by single-crystal X-ray diffraction. Cd₂B₂O₅ contains one-dimensional ribbons of edge-sharing CdO₆ octahedra that are bridged by B₂O₅ groups to form a threedimensional network. CdB₄O₇ is characterized by a threedimensional framework of corner-sharing B_4O_9 groups and tetrahedral Cd^{2+} centres. The crystal structure of $Cd_3B_2O_6$, or Cd₃(BO₃)₂, has previously been determined from powder X-ray data using the Rietveld method (Laureiro et al., 1991). However, the reliability indices were large $(R_{wp} = 0.221)$ and no standard uncertainties were given for the atomic coordinates and interatomic distances. While attempting to prepare novel lead cadmium borates, we unexpectedly obtained single crystals of Cd₃B₂O₆ and have redetermined its crystal structure.

$\begin{array}{c|cccc} 01^{i} & 02^{iii} & B & 01^{iv} & 02^{viii} \\ 02^{iii} & 02 & 01^{vi} & 01$


Figure 1

The local coordination geometries of Cd and B in Cd₃B₂O₆, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) -x, -y, -z; (ii) -x, -y, z; (iii) x, y, -z; (iv) -x, 1 - y, -z; (v) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (vi) $-\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (vii) -x, 1 - y, z; (viii) $-\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (ix) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} - z$.]

Received 5 December 2006

Accepted 17 January 2007

© 2007 International Union of Crystallography All rights reserved

A drawing of the Cd₃B₂O₆ structure, illustrating the linkages between the CdO₆ octahedra and BO₃ triangles.

In this structure, the Cd atoms occupy two crystallographically distinct octahedral sites with site symmetries 2/m (Cd1) and 2 (Cd2) (Fig. 1 and Table 1). The mean Cd-Odistances are 2.310 Å for Cd1 and 2.313 Å for Cd2, which are close to those in $Cd_2B_2O_5$ (2.303–2.334 Å; Weil, 2003). The unique B atom in the asymmetric unit lies on a mirror plane. The sum of the O-B-O angles is equal to 359.8° , indicating that the triangular coordination deviates only slightly from the ideal planar geometry. The average B-O distance is 1.393 Å, close to the values reported in other compounds having BO₃ groups, e.g. PbZn₂(BO₃)₂ (1.376 Å; Chen et al., 2006). Of the two unique O atoms, O1 is on a mirror plane and O2 occupies a general position. Both O atoms are four-coordinated by three Cd atoms and one B atom in a distorted tetrahedral geometry. Bond-valence sum calculations (Brown & Altermatt, 1985) give values of 2.004-2.006 for Cd, 2.827 for B and 1.938-1.948 for O, consistent with their expected formal valences.

The CdO₆ octahedra are linked through common corners and edges to form a three-dimensional framework with onedimensional channels running along the [100] direction (Fig. 2). The B atoms are incorporated into these channels and interact with the framework via B-O bonds to strengthen the structure. The BO₃ groups are aligned approximately parallel to the (100) plane [at an angle of 16.78 $(8)^{\circ}$] and are stacked in a staggered arrangement along the a axis. Each BO₃ triangle shares one edge with one Cd1O₆ octahedron and its three vertices with seven other CdO₆ octahedra. This edge-sharing leads to a highly distorted Cd1O₆ coordination.

It is noteworthy that, although $Zn_3B_2O_6$ (Chen *et al.*, 2005) is related to $Cd_3B_2O_6$ in stoichiometry, the two structures are different. The Zn compound is characterized by a threedimensional framework of corner- and edge-sharing ZnO₄ tetrahedra and BO₃ triangles.

Experimental

A powder mixture of PbO (0.1274 g, 0.5708 mmol), CdO (0.2924 g, 2.2773 mmol) and B₂O₃ (0.0794 g, 1.1405 mmol) was transferred to a small gold container. The sample was heated at 923 K for two weeks, cooled to 873 K at a rate of 0.5 K h^{-1} , and then cooled to room temperature at a rate of 30 K h⁻¹. Colourless block-like crystals of $Cd_3B_2O_6$ with dimensions of up to $0.3 \times 0.3 \times 0.2 \text{ mm}^3$ were recovered and mechanically separated from the reaction product. The powder X-ray diffraction pattern of the product revealed the existence of Cd₃B₂O₆ together with an unknown amorphous phase. The crystals were also checked by energy-dispersive X-ray analyses in a scanning electron microscope, which showed the presence of cadmium as the only heavy element. Although Pb was not incorporated into the final structure, lead borate possibly acted as a flux for the crystal growth.

The IR spectrum of Cd₃B₂O₆ exhibits three sets of bands characteristic of the planar triangular BO3 group. They are the out-ofplane bending modes (ν_2) occurring at 711.9 cm⁻¹, the antisymmetric stretch (ν_3) in the range 1163.6–1230.5 cm⁻¹, and the in-plane mode (v_4) between 576.9 and 612.8 cm⁻¹. These values correspond well with those reported in the literature (Thompson et al., 1991).

Crystal data

$Cd_3(BO_3)_2$	Z = 2
$M_r = 454.82$	$D_x = 5.868 \text{ Mg m}^{-3}$
Orthorhombic, Pnnm	Mo $K\alpha$ radiation
a = 5.968 (1) Å	$\mu = 12.24 \text{ mm}^{-1}$
b = 4.786 (1) Å	T = 290 K
c = 9.012 (2) Å	Prism, colourless
V = 257.41 (9) Å ³	$0.20 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Rigaku AFC-7R diffractometer
$\omega/2\theta$ scans
Absorption correction: ψ scan
(Kopfmann & Huber, 1968)
$T_{\min} = 0.109, \ T_{\max} = 0.289$
705 measured reflections
601 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.034$ wR(F²) = 0.123 S = 1.19601 reflections 32 parameters $w = 1/[\sigma^2(F_o^2) + (0.0703P)^2]$ + 1.0922P] where $P = (F_0^2 + 2F_c^2)/3$

505 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$ $\theta_{\rm max} = 34.9^{\circ}$ 3 standard reflections every 150 reflections intensity decay: 1.7%

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 2.41 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -2.11 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.010 (2)

Table 1 Selected geometric parameters (Å, °).

Cd1-O1	2.269 (4)	Cd2-O1 ⁱⁱ	2.363 (3)
Cd1-O2	2.331 (3)	B-O1 ⁱⁱⁱ	1.376 (7)
Cd2-O2	2.241 (3)	B-O2	1.402 (4)
Cd2-O2 ⁱ	2.336 (3)		
O1 ⁱⁱⁱ -B-O2	121.8 (2)	$O2^{iv}-B-O2$	116.2 (5)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x, -y + 1, -z; (iv) x, y, -z.

inorganic papers

The highest residual electron-density peak is located 1.64 Å from atom Cd2 and the deepest hole is located 1.31 Å also from atom Cd2.

Data collection: Rigaku/AFC Diffractometer Control Software (Rigaku, 1994); cell refinement: Rigaku/AFC Diffractometer Control Software; data reduction: Rigaku/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.

This work was supported by the Talent Training Funds of Beijing through grant No. 20051D0501501, by the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality, and by the Natural Science Foundation of Beijing (grant No. 2073021).

References

- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Chen, D.-G., Cheng, W.-D., Wu, D.-S., Zhang, H., Zhang, Y.-C., Gong, Y.-J. & Kan, Z.-G. (2005). *Solid State Sci.* 7, 179–188.
- Chen, X.-A., Zhao, Y.-H., Chang, X.-A., Zhang, L. & Xue, H.-P. (2006). Acta Cryst. C62, i11–i12.
- Dowty, E. (1999). ATOMS. Version 5.0. Shape Software, Kingsport, Tennessee, USA.
- Ihara, M. & Krogh-Moe, J. (1966). Acta Cryst. 20, 132-134.
- Kopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348-351.
- Laureiro, Y., Veiga, M. L., Lopez, M. L., Garcia-Martin, S., Jerez, A. & Pico, C. (1991). *Powder Diffr.* 6, 28–30.
- Rigaku (1994). Rigaku/AFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Thompson, P. D., Huang, J.-F., Smith, R. W. & Keszler, D. A. (1991). J. Solid State Chem. 95, 126–135.
- Weil, M. (2003). Acta Cryst. E59, i95-i97.